#include <stdio.h>
#include <stdio.h>
#include <ncarg/ncargC.h>
#include <ncarg/gks.h>
#include <ncarg/ngmath.h>
void c_bkgft1(float, char *, float, float);
void c_drwft1(int, float [], float [], int, float [], float [],
float [], float []);
/*
* Example of curv1, curv2, curvd, curvi.
*/
#define IDIM 11
#define IOUT 201
#define IWTYPE 1
#define WKID 1
main()
{
float x[] = { 0.00, 2.00, 5.00, 8.00, 10.00, 13.00,
15.00, 18.00, 21.00, 23.00, 30.00};
float y[] = { 1.00, 0.81, 0.00, -0.81, -1.00, -0.84,
-0.56, 0.04, 0.73, 1.18, 2.00};
float xinc, xo[IOUT], yo[IOUT], yd[IOUT], yi[IOUT];
int i;
/*
* Create the output X coordinate array.
*/
xinc = 30./(IOUT-1);
for (i = 0; i < IOUT; i++) {
xo[i] = xinc * i;
}
/*
* Require that the derivatives of the interpolated curve are
* zero at the end points.
*/
c_ftseti("sf1", 0);
c_ftsetr("sl1", 0.0);
c_ftsetr("sln", 0.0);
/*
* Calculate the interpolated values, the derivative, and the integral.
*/
c_ftcurv(IDIM, x, y, IOUT, xo, yo);
c_ftcurvd(IDIM, x, y, IOUT, xo, yd);
for (i = 0; i < IOUT; i++) {
c_ftcurvi(0., xo[i], IDIM, x, y, yi+i);
}
/*
* Draw plot.
*/
c_drwft1(IDIM,x,y,IOUT,xo,yo,yd,yi);
}
void c_drwft1(int n, float x[], float y[], int m, float xo[], float yo[],
float yd[], float yi[])
{
int i;
float yb, yt, ypos_top = 0.88;
Gcolr_rep rgb;
Gpoint plist[IDIM];
Gpoint_list pmk;
/*
* Open GKS, open and activate a workstation.
*/
gopen_gks("stdout",0);
gopen_ws(WKID, NULL, IWTYPE);
gactivate_ws(WKID);
/*
* Define a color table.
*/
rgb.rgb.red = rgb.rgb.green = rgb.rgb.blue = 1.;
gset_colr_rep(WKID,0,&rgb);
rgb.rgb.red = rgb.rgb.green = rgb.rgb.blue = 0.;
gset_colr_rep(WKID,1,&rgb);
rgb.rgb.red = 1.;
rgb.rgb.green = rgb.rgb.blue = 0.;
gset_colr_rep(WKID,2,&rgb);
rgb.rgb.red = rgb.rgb.green = 0.;
rgb.rgb.blue = 1.;
gset_colr_rep(WKID,3,&rgb);
/*
* Plot the main title.
*/
gset_clip_ind(0);
c_plchhq(.5,.95,":F25:Demo for c_ftcurv, c_ftcurvd, c_ftcurvi",0.03,0.,0.);
/*
* Graph the interpolated function values and mark the original
* input data points.
*/
yb = -1.0;
yt = 2.0;
c_bkgft1(ypos_top,"Function",yb,yt);
c_gridal(6,5,3,1,1,1,10,0.0,yb);
c_curve(xo,yo,m);
/*
* Mark the input data points.
*/
for (i = 0; i < n; i++) {
plist[i].x = x[i];
plist[i].y = y[i];
}
gset_marker_size(2.);
gset_marker_colr_ind(3);
pmk.num_points = n;
pmk.points = plist;
gpolymarker(&pmk);
/*
* Graph the derivatives.
*/
yb = -0.3;
yt = 0.3;
c_bkgft1(ypos_top-0.3,"Derivative",yb,yt);
c_gridal(6,5,3,1,1,1,10,0.0,yb);
c_curve(xo,yd,m);
/*
* Graph the integral.
*/
yb = -6.0;
yt = 10.0;
c_bkgft1(ypos_top-0.6,"Integral",yb,yt);
c_gridal(6,5,4,1,1,1,10,0.0,yb);
c_curve(xo,yi,m);
c_frame();
/*
* Deactivate and close workstation, close GKS.
*/
gdeactivate_ws(WKID);
gclose_ws(WKID);
gclose_gks();
}
void c_bkgft1(float ypos, char *label, float yb, float yt) {
c_set(0.,1.,0.,1.,0.,1.,0.,1.,1);
c_pcseti("fn",21);
c_plchhq(.2,ypos-0.03,label,0.025,0.,-1.0);
c_set(0.13,0.93,ypos-0.2,ypos,0.0,30.0, yb, yt, 1);
gset_line_colr_ind(2);
c_line(0.,0.,30.,0.);
c_sflush();
gset_line_colr_ind(1);
c_gaseti("lty",1);
c_pcseti("fn",21);
c_gasetr("xls",0.02);
c_gasetc("xlf","(i3)");
c_gasetr("yls",0.02);
c_gasetc("ylf","(f5.1)");
c_gasetr("xmj",0.02);
c_gasetr("ymj",0.02);
}
home |
contents |
defs |
params |
procedures |
exmpls